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1 Introduction

Typical risk assessment strategies use animal models and in vitro experiments as surro-
gates for human studies in the early stages of drug development. Toxicity assessment
is then conducted using conventional indicators such as pathology and clinical chem-
istry data. Although these methods are widely used, around 40% of drug-induced liver
injury (DILI) cases are not detected in the preclinical studies using these conventional
indicators, and agreement between studies on animal models and human clinical trials
is often poor. To overcome these issues, advances in modern “-omics” including high-
throughput microarrays and next-generation sequencing technologies have allowed us-
ing genomic biomarkers in risk assessment. The underlying hypothesis is that genomic
biomarkers will be more sensitive than conventional markers in detecting toxicity signals.

In this paper, we predicted DILI based on microarray data sets provided by the
Japanese toxicogenomics project [1], a CAMDA 2013 challenge. We first explored the
possibility of replacing the animal model with in vitro assay coupled with toxicogenomics.
Previous studies addressed this problem using the agreement of differentially expressed
gene lists from in vivo and in vitro data, and found poor agreement between the two [2].
Pessiot et al. then proposed to evaluate the in vivo-in vitro agreement using Gene Set
Enrichment Analysis (GSEA) on collapsed probesets [2], which has shown success in im-
proving such agreement. Here we took an alternative approach. Instead of comparing
features (for example, differentially expressed genes) resulting from in vivo and in vitro
experiments, we evaluated biological consequences such as pathological measurements and
observed DILI by comparing the power of gene features to predict these consequences.
The underlying hypothesis was that the processes that cause pathology and DILI effects
are complicated and may involve many factors; and although in vivo and in vitro data
sets may share many common characteristics, they could also capture different biological
information. Because drug toxicity could result from perturbations of biological metabolic
pathways, these effects could happen at any level and could be induced by several key
players. We also explored the possibility of predicting the DILI potential in humans us-
ing the in vitro data from rat primary hepatocytes or human primary hepatocytes. Our
method focused on the analysis of resulting pathological data and therefore could provide
a more fair comparison using downstream effects as our key. Because the pathological data
is available for in vivo assays only, we assumed that drug will cause similar pathological
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results in in vitro experiments as it does for in vivo assays. For DILI data, we assumed
a drug has similar liver injury effect in humans and rats for predicting liver injury using
toxicogenomics data from animals.

2 Materials and Methods

We explored the possibility of predicting the DILI potential in humans using Japanese
toxicogenomics project data, which provided close to 20,000 pre-processed Affymetrix
microarrays used to measure the effects of 131 drugs on the liver [1]. These included
rat in vivo data with two experiment designs (single and repeated) and in vitro data of
both rat and human (using rat and human hepatocytes). Various drug dose levels and
sacrifice time after treatments were applied in the experiment design. We used FARMS-
summarized and collapsed gene expression values as described previously [3] in modeling
and analysis for this paper.

Among the 131 drugs, 101 were associated with one of the following categories: “Most
DILI concern”, “less DILI concern” and “no DILI concern”. We considered DILI predic-
tion as a binary classification problem. Unlike previous work [3] that used two classes of
“Most DILI” against “Less DILI” or “No DILI”, we used the control microarray data as
one class and the microarray data from “ Most DILI concern” and “Less DILI concern”
drugs as the other class because we found it is difficult to differentiate between these
two labels. Each microarray data is represented by 12,088 genes (rats) or 18,988 genes
(humans).

CAMDA challenge also provided a total of 5569 summaries of the rat liver pathology
reports as previously described [1], which makes supervised training possible to predict
pathology. For each pathology finding, we ignore severity and create a dataset for that
finding and use binary classification model to classify it. As in previous work [4], only
the five most frequent pathology findings, for which the largest data sets were available,
were evaluated: hypertrophy, necrosis, cellular infiltration, microgranuloma and cellular
change.

As to the classification model used we applied Random Forest (RF) [5], which is
an ensemble approach based on the aggregation of a set of decision trees, where each
tree is grown from a bootstrap sample (sampling with replacement) of the original data.
The average over all of the predictions from the individual trees was considered as the
final predicted value. In addition to achieving competing prediction accuracy compared
to the state-of-the-art machine learning methods, Random Forest also could cope with
high dimensional data and has good model interpretability while incorporating variable
selection inside the learning process.

Source code and additional results from the analysis are available at: https://

bitbucket.org/davidzhang/camda2013.
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(a) Low dose level
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(b) Middle dose level
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(c) High dose level

Figure 1: ROC curves in classifying DILI using Rat in vitro data

3 Results

We first explored influences of different experiment designs (dose and sacrifice time) on
the prediction of DILI potential. Figure 1 demonstrates ROC curves for the classification
of DILI categories using rat in vitro data sets of different combinations of dose level (low,
middle and high) and time point (3, 6, 9 and 24 hour after treatment). The ROC curves
are averaged results using 5-fold cross validation. Although various combinations of dose
and time points have different sets of differentially expressed genes, they all have good
and similar discriminative power in classifying samples as damaged and non-damaged.
This observation suggests that time information and dose level are not critical factors in
assessing drug toxicity in these data, which is consistent with the prior findings of Pessiot
et al. [2].

3.1 Comparisons between rat in vivo and in vitro studies

To evaluate the possibility of replacing an animal in vivo study with in vitro assay, we
built a classifier on available rat in vitro data and then used it to predict rat in vivo
data. Figure 2(a) demonstrates the ROC curve of DILI classification using 1,000 trees
in the Random Forest. The result is promising (AUC=0.83). On the other hand, the
RF model built on in vivo data can perfectly predict DILI potential of in vitro assay
(AUC=1.00, results not shown). In addition to providing prediction, RF also calculates
variable importance (VIM) for each feature when constructing the model. We then com-
pared two gene lists: one list include genes in in vivo study with VIMs not larger than
0 (referred to as in vivo gene list), and the other list contains genes from in vitro assay
whose VIMs are not larger than 0 (referred to as in vitro gene list). These two gene lists
were obtained according to RF VIMs based on RF models constructed on in vivo and in
vitro data sets separately. Figure 4 shows the Venn diagram of the comparison. Among
5,845 total important genes, only 1575 (26.88%) genes are shared by two lists, indicating
poor agreement when comparison is performed between gene features. Nevertheless, using
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(a) Rat in vitro classify rat in vivo
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(b) Rat in vivo classify human in vitro

Figure 2: ROC curves of rat in vivo DILI classification using RF model built on rat in
vitro data (a) and of human in vitro DILI classification using RF model built on rat in
vivo data (b)

DILI classification as an interpretation of important genes from the two lists is a better
approach to compare rat in vivo and in vitro data sets. Since DILI is derived eventually
from pathology and clinical chemistry data, thus we expect classifier using RF model
for predicting pathological data also preform good. Figure 3 demonstrates five leading
pathologies classification using RF model built on rat in vivo data (Figure 3(a)) and rat
in vitro data (Figure 3(b)) .

3.2 Comparisons between human in vitro and rat in vitro data

The results as shown in Figure 2(a) demonstrate that replace animal model with in
vitro assay is possible. Furthermore, we attempted to predict DILI in humans using rat
toxicogenomics data. We created an ortholog gene mapping between human genes and
rat genes according to their corresponding probe-set common gene names and obtained a
list of 9,947 pairs of ortholog genes. A RF classification model was constructed using rat
in vitro data and such model was then used to predict DILI potential of human in vitro
gene expression data. The result as shown in Figure 2(b) demonstrates that we could
accurately classify human DILI (AUC=1.0) using model built on rat in vitro data, which
implies it is possible to predict the liver injury in humans using toxicogenomics data from
animal in vitro assays.
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Figure 3: ROC curves for classifying five pathologies
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