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Introduction 

Accurately estimating a drug’s potential to cause liver damage is especially important, as 

the liver is the organ most commonly interacting with consumed drugs. The Food and Drug 

Administration (FDA) developed a classification system [Chen et al, 2011] of drug-induced liver 

injury (DILI) potential (most, less, and no DILI concern). The drugs they applied their 

classification system to had been on the market for a minimum of 10 years, allowing sufficient 

public interaction to obtain updated and realistic DILI potential information. In contrast, new 

drugs will have only been tested in an experimental scene with much less data and typically with 

animal models. Toxicity effects from drugs might only become apparent after prolonged or 

human exposure, but it is not ethical to subject the public to unknown risks of this nature. 

Therefore, toxicogenomics, the study of drug-induced toxicity through biomarkers, is now a 

popular solution and the hunt is on for expression levels that predict high DILI potential. 

The Japanese Toxicogenomics Project (TGP) has such motivations [Uehara et al. 2010]. 

With human in vitro, rat in vitro, and rat in vivo experiment models, they tested 131 drugs, many 

part of the FDA classification system, on liver samples for gene expression levels on thousands 

of probsets, using Affymetrix GeneChip® technology. This year’s International Conference on 

Critical Assessment of Massive Data Analysis (CAMDA 2013) utilizes the TGP data to propose 

analysis challenges involving prediction of toxicity levels of drugs. Discovering novel 

biomarkers associated with DILI potential could aid in safely classifying the toxicity of new 

drugs. However, the breadth of genomic data makes analysis with simple statistical models 

challenging and dimension reduction techniques could be essential in some data scenarios. 

Principal Component Analysis (PCA) is a multivariate dimension reduction and 

visualization technique that produces a new set of variables called principal components (PCs), 

constructed as linear combinations of the original variables, that efficiently organize the 

information in the original dataset and prepares for a computationally simpler analysis. The 

downfall to PCA is that PCs are comprised of all original variables, which is: a) unrealistic, if 

PCA is used for identifying group structure in the data, and b) confusing, since the interpretation 

of PCs near impossible. Sparse Principal Component Analysis (Sparse PCA) is a new extension 

to classical PCA that systematically forces variables with residual contribution to have 0-valued 

loadings, therefore attaining a) a more concise and realistic group structure of the data, and b) a 

more interpretable set of PCs for further analysis; absolutely critical for large genomic data. 

In our contribution to the International Conference of CAMDA 2013, we utilize Sparse 

PCA to assemble organized gene expression profile variables (sparse PCs) for subsets of the 

human in vitro TGP data. We then use these sparse PCs to determine groups of gene expressions 

jointly associated with human DILI concern. By targeting linear combinations of gene 

expressions rather than individual probsets, we hope to uncover potentially interesting avenues 

for biological interpretation. 



Methods 

Data: 

The TGP administered control, low, middle, and high doses of 119 to 131 drugs to human 

in vitro hepatocytes, rat in vitro hepatocytes, and rat in vivo. Gene expressions from the samples 

were measured at several time points after the drugs had been given. 

Targeted Samples: We consider only samples from the human in vitro experiments. Of 

the 119 drugs applied to human samples, we consider only the 93 drugs that have human DILI 

concern classification as provided by Chen et al in 2007. Anticipating that higher doses result in 

more robust gene expression measurements (McMillian et al, 2005) and due to many drugs not 

being administered at low doses in the human in vitro samples, we consider only middle and 

high dose levels across all samples. Likewise, since measurements of gene expression in the 

human samples were not taken at 2hrs for many drugs, we restrict our analysis to only gene 

expressions measured at 8 and 24 hours. Of the two human samples found within each 

combination of drug, dose level, and gene expression sampling time, we used only the first, 

assuming the duplicates to be technical replicates. 

Targeted Variables: Starting with the 54675 probsets retrieved from the Affymetrix 

GeneChip® Human Genome U133 Plus 2.0 Array with MAS5 summarization, we filtered out 

the bottom 75 percent in terms of Inter-Quartile Range (IQR), retaining only the 13669 most 

variable probsets. We transformed all gene expression values using log base 2 to dull the 

presence of outliers and achieve distributions closer to normal. Additionally, we measured gene 

expression changes between dose levels (High – Control, Middle – Control, High – Middle) at 

different sampling times and gene expression changes between sampling times (24 hours – 8 

hours) at different doses; outcomes that better represent effects of dose levels and capture gene 

expression over time [Sukumaran et al, 2010]. Human DILI concern (‘most’, ‘less’, and ‘no DILI 

concern’ in humans) was used to detect if gene expression measurements differed across DILI 

classification. However, since only 8 drugs are classified as ‘no DILI concern’, we reclassified 

the human DILI concern variable to be binary: ‘most DILI concern’ vs. ‘less or no DILI 

concern’. Of the 93 drugs we considered for humans, 40 are ‘most DILI concern’ and 53 are 

‘less or no DILI concern’; relatively balanced. 

Analysis: 

Investigate marginal associations: For each subset of data and gene expression outcome 

variable, we statistically tested marginal associations between each probset and human DILI 

concern by using moderated t statistics, tracking and counting those probsets with p-values < 

0.05 and, more appropriately due to running many tests, those probsets with p-values < 0.05 after 

adjusting for false-discovery rate (FDR). Moderated t statistics, p-values, and FDR-adjusted p-

values were calculated using the LIMMA package in R v3.0.0. We plan to examine if these 

probsets are found and grouped in our sparse PCA analysis. 

Sparse PCA for finding joint associations: For each subset of data and gene expression 

outcome variable, we build 93 sparse PCs to summarize the gene expression data by using the 

sparse PCA method proposed by Witten, Tibshirani, and Hastie in 2009; the ‘SPC’ function in 

the authors R-package ‘PMA’. Within such a high-dimensional data environment, their sparse 

PCA method is suggested as the best choice among competitors (Bonner and Beyene, 2012). We 

used several tuning parameters, 3, 5, 10, 20, 30, 40, to force different levels of sparseness to the 

PCs, looking for a balance between sparseness and percentage total variance retained among 

PCs. We statistically tested associations between sparse PCs and human DILI concern by using 

student t statistics, tracking and counting those sparse PCs with p-values < 0.05 and, more 



appropriately, those sparse PCs with p-values < 0.05/93; a simple bonferroni adjustment for 

multiple testing, since sparse PCs are relatively independent. Within sparse PCs that were 

statistically significant, we identified the largest loadings and examined genetic structure for 

corresponding probsets We plan to report which genetic regions were most represented. 

 

Results 

Table 1 displays counts of probsets that were marginally associated with human DILI 

concern, for each combination of subgroup and gene expression outcome. We include results 

from a control dose subgroup analyses to highlight, through comparison, how many false-

positives we expect to find in other analyses; control dose (0) across all drugs should generate 

the same gene expression levels, regardless of drug class, providing a baseline number of false-

positives. Using FDR-adjusted p-values, we found only 3 probsets differentially expressed 

between most and less-or-no DILI concern: ‘1563061_at’ for single value expression 

measurements at high doses and 8 hour sampling time, and ‘1567060_at’ and ‘1557437_at’ for 

single value expression measurements at high doses and 24 hour sampling time. 

Moving to joint associations, we chose to examine only those sparse PCs obtained from 

using a tuning parameter of 30, since the immense sparseness induced by smaller tuning 

parameters reduced the percentage explained variance of the PCs too much. The sparse PCs we 

investigate had an average of 1727.11 non-zero loadings, down from an expected 13669 that 

classical PCA would produce. The total percentage of probset variance explained by all PCs 

ranged from 40.3% to 68.1%, depending on the subgroup and gene expression outcome. This is a 

substantial amount considering almost 90% of the loadings were forced to 0, validating the 

ability of Sparse PCA as a dimension reduction technique. As shown in Table 1, we found only 2 

sparse PCs to be differentially expressed between most and less-or-no DILI concern after 

adjusting for multiple testing; Figure 1 presents their loading plots. Although there does not seem 

to be any trend in the probsets when ordering them as found in the database, we can investigate 

the top contributing probsets as they might provide insightful biological meaning regarding the 

PC. Loadings above the blue lines in Figure 1 correspond to probsets: 1557636_a_at, 215586_at, 

243325_at, 1568751_at, and 1560349_at. 

 

Discussion 

Overall, analyzing human in vitro samples did not allow us to find any blaringly obvious 

gene expressions. Perhaps rat samples would boast more gene expression associations. It seems 

that high dose levels are slightly more able to detect probsets differentially expressed between 

most and less-or-no DILI concern in humans. Though, finding just three individual probsets 

differentially expressed after adjusting for multiple testing is a convincing argument towards 

investigating more complex relationships between human DILI concern and gene expressions. 

Coupling this motivation with high dimensional data issues, applying Sparse PCA seems to be an 

appropriate solution as not only does it automatically construct sparse linear combinations of the 

probsets, thus highlighting underlying structure among gene expression, but it also dramatically 

reduces the number of variables we need to analyze. 

With just two sparse PCs considered differentially expressed after adjusting for multiple 

testing, it leads us to believe that just a few networks of human gene expressions are associated 

with DILI concern. However, since the sparse PCs host a collection of probsets, there exists 

more room for exploration, providing a more interesting avenue for biological investigation. 



There were limitations with our analysis approach that we are looking forward to 

addressing. Due to each of our analyses having just 93 samples (1 per drug), using human DILI 

concern as a strict classification may have been presumptuous of drug homogeneity. Drugs are 

quite heterogeneous in their relations to gene expression (Afshari et al, 2011), so even if two 

drugs of most DILI concern were influential to a marker of gene expression, perhaps one up-

regulates while the other down-regulates, leaving the resulting behavior deemed non-influential. 

Anticipating this, we had also investigated absolute changes in gene expression across doses and 

sampling times, but the findings were similar to those already presented. That said, perhaps we 

limited our results interpretation when restricting our view to only the probsets significant after 

adjusting for multiple testing. Figure 2, for example, shows that clustering samples by the top 

100 differentially expressed probsets in the high dose, 8 hour subgroup is able to group DILI 

classes rather well. Sparse PCA can be regarded as a more statistically formal clustering method, 

so we have high hopes for extracting groups of gene expressions with our methods. Finally, 

sparse PCA is unsupervised, such that it does not build sparse PCs with the factor of interest, 

human DILI concern, in mind. Perhaps a supervised approach to selecting gene expressions such 

as Sparse Partial Least Squares (SPLS) would be more effective. 

 

Future Directions 

This is work in progress. In time for the CAMDA 2013 conference, we plan to integrate gene 

information to gain biological context and we will be including rat in vitro and rat in vivo 

samples to detect how sensitive gene expressions from rat samples are compared to human 

samples. Human DILI-associated gene structures obtained via sparse PCA on the rat samples can 

be compared to those found in humans, mapping common gene functions (Uehara et al., 2008). 

As well, the FARMS summarized data will be used. 
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Table 1: Counts of probsets that are differentially expressed between samples receiving drugs 
of most and less-or-no DILI concern; n = 93 samples (1 per drug) and p = 13669 gene 
expression measurements within each subgroup. 

Subgroup Gene Expression 
Measurement 

# DEGs, p<0.05 
(# passed FDR) 

# DEsPCs, p<0.05 
(# passed Bonferroni) 

High dose, 8 hours Single Value 827 (1) 6 (0) 

Middle dose, 8 hours Single Value 707 (0) 4 (0) 

Control dose, 8 hours Single Value 846 (0) 6 (0) 

High dose, 24 hours Single Value 700 (2) 2 (1) 

Middle dose, 24 hours Single Value 641 (0) 4(0) 

Control dose, 24 hours Single Value 680 (0) 3 (0) 

8 hours Change (H – C dose) 645 (0) 4 (0) 

8 hours Change (M – C dose) 717 (0) 6 (0) 

8 hours Change (H – M dose) 679 (0) 5 (0) 

24 hours Change (H – C dose) 676 (0) 4 (0) 

24 hours Change (M – C dose) 673 (0) 6 (0) 

24 hours Change (H – M dose) 702 (0) 4 (1) 

High dose Change (24 – 8 hours) 715 (0) 5 (0) 

Middle dose Change (24 – 8 hours) 690 (0) 3 (0) 

Control dose Change (24 – 8 hours) 700 (0) 7 (0) 

Figure 1: Loading plots for the top significant sparse PCs. Probsets corresponding to the top 
loadings might be of significant interest.  

 

Figure 2: Heatmap showing clustering of most (red) vs. less-or-no (blue) DILI concern.  

 


